PUBLICATIONS
In the last few decades wild boar populations have expanded northwards, colonizing boreal forests. The soil disturbances caused by wild boar rooting may have an impact on soil organisms that play a key role in organic matter turnover. However, the impact of wild boar colonization on boreal forest ecosystems and soil organisms remains largely unknown. We investigated the effect of natural and simulated rooting on decomposer and predatory soil mites (total, adult and juvenile abundances; and adult–juvenile proportion). Our simulated rooting experiment aimed to disentangle the effects of (i) bioturbation due to soil mixing and (ii) removing organic material (wild boar food resources) on soil mites. Our results showed a decline in the abundance of adult soil mites in response to both natural and artificial rooting, while juvenile abundance and the relative proportion of adults and juveniles were not affected. The expansion of wild boar northwards and into new habitats has negative effects on soil decomposer abundances in boreal forests which may cascade through the soil food web ultimately affecting ecosystem processes. Our study also suggests that a combined use of natural and controlled experimental approaches is the way forward to reveal any subtle interaction between aboveground and belowground organisms and the ecosystem functions they drive.
|
It is well established that application of biochar to soils can promote soil fertility, which ultimately may enhance plant growth. While many mechanisms have been proposed to explain this, one specific mechanism, the “microbial refugia hypothesis,” suggests that biochar may provide physical protection for soil microbe from soil microfauna that otherwise exert top-down control on microbial biomass and activity. We tested the microbial refugia hypothesis by incubating two boreal soils with and without biochar derived from a wood mixture of boreal tree species (Picea abies and Pinus sylvestris), and with and without soil nematodes. We measured phospholipid fatty acids (PLFA) as a relative measure of microbial biomass, and several variables indicative of microbial activity, including extractable nutrient concentrations (NH4+, NO3−, and PO4−), heterotrophic N2-fixation, and soil respiration. Contrary to our expectations, we found that biochar by itself did not stimulate microbial biomass or activity. Furthermore, we found that nematode addition to soil stimulated rather than depressed the biomass of several bacterial PLFA groups. Finally, interactive effects between the nematode treatment and biochar never worked in a way that supported the microbial refugia hypothesis. Our findings suggest that a typical boreal biochar applied to boreal soils may not have the same stimulatory effect on microbial biomass and activity that has been shown in some other ecosystems, and that enhanced plant growth in response to biochar addition sometimes observed in boreal environments is likely due to other mechanisms, such as direct nutrient supply from biochar or amelioration of soil pH.
|
Like humans, plant and animal species have a specific type of place, called an ecosystem, where they prefer to live. If the ecosystem changes too much, some species will disappear, much the same way people avoid living in the desert because it is too hot and dry. Humans modify many ecosystems, sometimes so severely that almost no plants or animals can live there anymore. To help damaged ecosystems recover, we often start by planting trees or other plants. Biologists found that mycorrhizal fungi, tiny fungi living in the soil and inside plant roots, could speed up ecosystem recovery by making plants grow back faster and stronger. In this article, we describe how the recovery of ecosystems can be enhanced by mycorrhizal fungi, and when mycorrhizal fungi are especially helpful.
|
Forest ecosystems are subjected to global change drivers worldwide, such as increasing temperature, atmospheric carbon dioxide, nutrient pollution, as well as changes in fire and precipitation regimes. These global change drivers have greatly modified the biogeochemical cycles of carbon (C), nitrogen (N) and phosphorus (P), which impact on primary productivity in forest ecosystems and, in turn, affect the quality and quantity of resources entering the soil food web. However, C, N and P soil dynamics have been mostly studied without considering their coupling effects on soil organisms. This is of critical interest because changes in nutrient stoichiometry may have a strong effect on soil biota and the ecosystem functions they drive. Further, most studies have focused on global change effects on bacteria and fungi and their C:N:P stoichiometry, while neglecting other soil organisms at higher trophic levels. This has led to an incomplete understanding of how the entire soil food web drives ecosystem processes involved in organic matter turnover and nutrient cycling. Here, we review studies that investigated how global change drivers impact C:N:P stoichiometry of soil organisms at different trophic levels in forest ecosystems and identify important knowledge gaps. We propose future directions for research on global change impacts on the linkages between soil biota and C:N:P stoichiometry.
|
Nitrogen (N) deposition can change the carbon (C) sink of northern coniferous forests by changing the balance between net primary production and soil respiration. We used a field experiment in an N poor Pinus sylvestris forest where five levels of N (0, 3, 6, 12, and 50 kg N ha−1 yr−1, n = 6) had been added annually for 12–13 years to investigate how litter C inputs and soil respiration, divided into its autotrophic and heterotrophic sources, respond to different rates of N input, and its subsequent effect on soil C storage. The highest N addition rate (50 kg N ha−1 yr−1) stimulated soil C accumulation in the organic layer by 22.3 kg C kg−1 N added, increased litter inputs by 46%, and decreased soil respiration per mass unit of soil C by 31.2%, mainly by decreasing autotrophic respiration. Lower N addition rates (≤ 12 kg N ha−1 yr−1) had no effect on litter inputs or soil respiration. These results support previous studies reporting on increased litter inputs coupled to impeded soil C mineralization, contributing to enhancing the soil C sink when N is supplied at high rates, but add observations for lower N addition rates more realistic for N deposition. In doing so, we show that litter production in N poor northern coniferous forests can be relatively unresponsive to low N deposition levels, that stimulation of microbial activity at low N additions is unlikely to reduce the soil C sink, and that high levels of N deposition enhance the soil C sink by increasing litter inputs and decreasing soil respiration.
|
There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal forest soils. However, it is unclear how free‐living saprotrophs (bacteria and fungi, SAP) and ectomycorrhizal (EM) fungi responses to N addition impact soil C dynamics. Our aim was to investigate how SAP and EM communities are impacted by N enrichment and to estimate whether these changes influence decay of litter and humus. We conducted a long‐term experiment in northern Sweden, maintained since 2004, consisting of ambient, low N additions (0, 3, 6, and 12 kg N ha−1 year−1) simulating current N deposition rates in the boreal region, as well as a high N addition (50 kg N ha−1 year−1). Our data showed that long‐term N enrichment impeded mass loss of litter, but not of humus, and only in response to the highest N addition treatment. Furthermore, our data showed that EM fungi reduced the mass of N and P in both substrates during the incubation period compared to when only SAP organisms were present. Low N additions had no effect on microbial community structure, while the high N addition decreased fungal and bacterial biomasses and altered EM fungi and SAP community composition. Actinomycetes were the only bacterial SAP to show increased biomass in response to the highest N addition. These results provide a mechanistic understanding of how anthropogenic N enrichment can influence soil C accumulation rates and suggest that current N deposition rates in the boreal region (≤12 kg N ha−1 year−1) are likely to have a minor impact on the soil microbial community and the decomposition of humus and litter.
|
Nutrient optimization has been proposed as a way to increase boreal forest production, and involves chronic additions of liquid fertilizer with amounts of micro- and macro-nutrients adjusted annually to match tree nutritional requirements. We used a short-term (maintained since 2007) and a long-term (maintained since 1987) fertilization experiment in northern Sweden, in order to understand nutrient optimization effects on soil microbiota and mesofauna, and to explore the relationships between plant litter and microbial elemental stoichiometry. Soil microbes, soil fauna, and aboveground litter were collected from the control plots, and short- and long-term nutrient optimization plots. Correlation analyses revealed no relationships between microbial biomass and litter nutrient ratios. Litter C:N, C:P and N:P ratios declined in response to both optimization treatments; while only microbial C:P ratios declined in response to long-term nutrient optimization. Further, we found that both short- and long-term optimization treatments decreased total microbial, fungal, and bacterial PLFA biomass and shifted the microbial community structure towards a lower fungi:bacterial ratio. In contrast, abundances of most fungal- and bacterial-feeding soil biota were little affected by the nutrient optimization treatments. However, abundance of hemi-edaphic Collembola declined in response to the long-term nutrient optimization treatment. The relative abundances (%) of fungal-feeding and plant-feeding nematodes, respectively, declined and increased in response to both short-term and long-term treatments; bacterial-feeding nematodes increased relative to fungal feeders. Overall, our results demonstrate that long-term nutrient optimization aiming to increase forest production decreases litter C:N, C:P and N:P ratios, microbial C:P ratios and fungal biomass, whereas higher trophic levels are less affected.
|
Maaroufi N.I., Nordin A., Palmqvist K., Gundale M.J. 2017. Nitrogen enrichment impacts on boreal litter decomposition are driven by changes in soil microbiota rather than litter quality. Scientific Reports 7: 4083
In nitrogen (N) limited boreal forests, N enrichment can impact litter decomposition by affecting litter quality and by changing the soil environment where litter decomposes. We investigated the importance of litter quality and soil factors on litter decomposition using a 2-year reciprocal transplant experiment for Picea abies needle litter, derived from plots subjected to 17 years of N addition, including control, low and high N treatments (ambient, 12.5 and 50 kg N ha−1 yr−1, respectively). Our data show that changes in soil factors were the main pathway through which N impacted litter decomposition, with rates reduced by ~15% when placed in high N relative to control plots, regardless of litter origin. Litter decomposition was correlated to soil microbiota, with Picea abies litter decomposition positively correlated with gram negative and fungal functional groups. Our results suggest that previous findings of increase soil C accumulation in response to N deposition is likely to occur as a result of changes in soil microbiota rather than altered litter quality.
|
There is evidence that anthropogenic nitrogen (N) deposition enhances carbon (C) sequestration in boreal soils. However, key underlying mechanisms explaining this increase have not been resolved. Two potentially important mechanisms are that aboveground litter production increases, or that litter quality changes in response to N enrichment. As such, our aim was to quantify whether simulated chronic N deposition caused changes in aboveground litter production or quality in a boreal forest. We conducted a long-term (17 years) stand-scale (0.1 ha) forest experiment, consisting of three N addition levels (0, 12.5, and 50 kg N ha-1 yr-1) in northern Sweden, where background N deposition rates are very low. We measured the annual quantity of litter produced for 8 different litter categories, as well as their concentrations of C, N, phosphorus (P), lignin, cellulose and hemi-cellulose. Our results indicate that mosses were the only major litter component showing significant quantitative and qualitative alterations in response to the N additions, indicative of their ability to intercept a substantial portion of the N added. These effects were, however, offset by the other litter fractions where we found no changes in the total litter fluxes, or individual chemical constituents when all litter categories were summed. This study indicates that the current annual litter fluxes cannot explain the increase in soil C that has occurred in our study system in response to simulated chronic N application. These results suggest that other mechanisms are likely to explain the increased soil C accumulation rate we have observed, such as changes in soil microbial activity, or potentially transient changes in aboveground litter inputs that were no longer present at the time of our study.
|
Anthropogenic activities have globally increased nitrogen (N) deposition and carbon dioxide (CO₂) gas emissions. It is proposed that anthropogenic N deposition may increase the size of boreal forest CO₂ sink, because boreal ecosystems are N limited. Despite studies that have helped to clarify the magnitude by which N deposition enhances carbon (C) sequestration in the vegetation, there remains a paucity of studies evaluating how soils respond. This thesis aims to clarify the magnitude to which C sequestration in boreal forests responds to N enrichments, including rates that realistically simulated N deposition (≤ 12.5 kg N ha⁻¹ yr⁻¹). This work was conducted in two long-term experiments in northern Sweden. The N treatments consisted of ambient, low N addition (3-12.5 kg N ha⁻¹ yr⁻¹) and high N addition (50 kg N ha⁻¹ yr⁻¹) rates, in a Norway spruce and a Scots pine forest, maintained since 1996 and 2004, respectively. The organic soil C pool positively responded to N enrichment, especially at the high N addition level. This increase corresponded to a relationship between C sequestration and N addition of 10 kg C kg⁻¹ N. Further, low N addition treatments had no effect on microbial biomass and soil respiration (i.e. soil C outputs, microbial activity), while high N addition decreased total microbial, ectomycorrhizal fungal biomasses and soil respiration. The actinomycetes were the only microbes showing an increase with N addition. Annual litter production showed a minor impact on aboveground litter C inputs. Only mosses were the only major litter component showing significant quantitative and qualitative changes in response to N additions. Further, litter quality mediated by N enrichment was not the main driver of litter decomposition, while shifts in soil microbes strongly influence the early stages of litter decomposition. Low N addition rates had little effect on litter and humus decomposition, whereas high N addition rates impeded the early stage of decomposition of both substrates. The decline of litter decomposition appeared to be mediated by shifts in the abundance or community structure of saprophytic organisms, while the decrease of humus decomposition was likely the result of reduced ectomycorrhizal fungi. Altogether, the results of this thesis show that long-term N inputs simulating current atmospheric N deposition in the boreal region are likely to have subtle effects on the soil C balance and therefore on soil C accumulation.
|
It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long‐term experimental studies evaluating how soil C pools respond. We conducted a long‐term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha−1 yr−1) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non‐significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg−1 N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg−1 N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region.
|
MANUSCRIPTS IN REVIEW
Nwe T. Z. , Maaroufi N. I. , Allan E. , Soliveres S. , Kempel A. Plant attributes interact with fungal pathogens and nitrogen addition to drive soil enzymatic activities and their temporal variation. In review in Functional Ecology
Cheng, Y., Rutten G., Liu, X., Ma M., Maaroufi N.I., Zhou S. Host plant height explains the effect of nitrogen enrichment on arbuscular mycorrhizal fungal communities. In review in New Phytologist
REPORTS
2008 Analysis of the lignin biosynthesis pathway response to fumigation by ozone in Populus alba×tremula leaves. (written in French).
2010 Nitrogen used by Fallopia spp., invasive species. (written in French).
2011 Master thesis. Investigation of greenhouse gas emissions from drained organic forest soils (CO2, CH4, N2O).
Nwe T. Z. , Maaroufi N. I. , Allan E. , Soliveres S. , Kempel A. Plant attributes interact with fungal pathogens and nitrogen addition to drive soil enzymatic activities and their temporal variation. In review in Functional Ecology
Cheng, Y., Rutten G., Liu, X., Ma M., Maaroufi N.I., Zhou S. Host plant height explains the effect of nitrogen enrichment on arbuscular mycorrhizal fungal communities. In review in New Phytologist
REPORTS
2008 Analysis of the lignin biosynthesis pathway response to fumigation by ozone in Populus alba×tremula leaves. (written in French).
2010 Nitrogen used by Fallopia spp., invasive species. (written in French).
2011 Master thesis. Investigation of greenhouse gas emissions from drained organic forest soils (CO2, CH4, N2O).